Plants and Harappan Subsistence
An Example of Stability and Change from Rojdi

Steven A. Weber

This book represents the first concerted attempt to examine Harappan diet and environment from an archeobotanical perspective. Drawing on analyses of archaeological plant materials from the site of Rojdi, Gujarat (3500 B.C. to 2000 B.C.), Dr. Weber gives us a unique look at subsistence patterns and environmental change within a socioeconomic framework. Plants and Harappan Subsistence is valuable not only for what it tells us about a little-known but critical aspect of life in Indus Valley but also for providing a methodology for the recovery and study of archeobotanical remains from other South Asian sites.

Dr. Steven A. Weber is lecturer in the Department of Anthropology, The University of Pennsylvania.

Mar. 1992; 200 pages w/maps, tables, figures, biblio; 0-8133-1379-1 (hc: WEBPLAH), $48.50; Rights: w/ind
Plants and Harappan Subsistence

STEVEN A. WEBER
Contents

Acknowledgements vii
List of Figures ix
List of Tables xi
Chapter 1. Introduction 1
Chapter 2. Archeological Perspectives on the Region 4
Chapter 3. Paleoethnobotanical Analysis 13
Chapter 4. Status of Paleoethnobotany in South Asia 21
Chapter 5. The Site of Rojadi 33
Chapter 6. Methods 52
Chapter 7. Description and Implications of the Rojadi Plant Material 61
Chapter 8. Paleoethnobotanical Reconstruction at Rojadi 101
Chapter 9. The Rojadi Plant-use/Subsistence Model 158
Chapter 10. Wider Significance of the Rojadi Plant Remains 170
Chapter 11. Conclusion 182
Bibliography 187
Acknowledgements

Of the many individuals who have aided in all phases of my research, I am most indebted to my wife Clare, who not only made valuable suggestions and helped in the typing and editing of the manuscript, but whose support, encouragement, wisdom, patience and love were evident throughout all stages of the work. I will also be forever grateful to my parents, Paul and Shirley Weber, who have consistently supported and encouraged me while I have carried out my studies.

This book is adapted from a dissertation written at the University of Pennsylvania. My doctoral studies were supervised by Dr. Gregory L. Possehl, who introduced me to India, and gave me the opportunity to work on the Rojdi Project. His guidance and assistance have been invaluable. I am also indebted to Dr. Clark Erickson for his insightful comments on drafts of the original dissertation, and to Dr. Naomi Miller for talking with me about my ideas on many occasions prior to, and at the time of writing.

My research has benefited from the comments and advice of several colleagues. Numerous discussions with Charles Frank Herman were instrumental in the development of my understanding of Rojdi. Dr. Paul Rissman, with whom I excavated at Rojdi, shared many ideas with me. I am grateful to Dr. D.P. Agrawal and Dr. M. Rafique Mughal, guest scholars at the University of Pennsylvania when I was writing this work, for their interest and valuable suggestions.

Dr. Gail Wagner's fine work in setting up the flotation system at Rojdi and initiating the archeobotanical portion of the investigations provided a strong basis for my own. I have benefited from the expertise of Dr. Vishnu-Mitre, who worked with me in the field as an archaeobotanist. He invested considerable time and effort in the collection of modern plant material for comparative purposes, and spent countless hours sharing his considerable knowledge of South Asian paleobotany with me and verifying my identifications. His
hospitality and friendship have been untaling.

Several individuals and institutions assisted me in the interpretation of my data. Dr. M.D. Kajale of Deccan College Postgraduate and Research Institute in Pune, and Dr. Lorenzo Costantini, Director of Centro Scavi E Ricerche Archaeologiche in Rome gave me advice and assistance that were most valuable for the completion of my analysis. Dr. K.S. Saraswat, of the Birbal Sahni Institute of Palaeobotany, Lucknow, contributed stimulating discussions of archeobotany in the subcontinent. Dr. J.K. Maheshwari, Deputy Director of the National Botanical Research Institute in Lucknow and Dr. S.D. Sabnis, Professor of Botany at M.S. University of Baroda, were gracious and generous hosts, from whom I learnt much about Indian ethnobotany. I am also grateful to the faculty of Saurashtra University in Rajkot for their help and hospitality.

Among the members of the Gujarat Department of Archaeology, in association with which the site was excavated, special thanks go to Mr. Y.M. Chitalwala, and Mr. M.H. Rawal, Director of the Department and Co-director of the excavation at Rojdi. For the care and skill with which material from Rojdi was excavated and floated, credit must go to the entire Rojdi team and laborers from the village of Sri Nathgadh.

I would like to thank the Archaeological Survey of India, which gave permission to work at Rojdi. Funding for the excavation and for my project came from the Smithsonian Foreign Currency Program and the Anthropology Section of the National Science Foundation. The American Institute of Indian Studies, which oversaw the allocation of funds, provided substantial logistical and administrative support. I am especially indebted to Dr. P.R. Mehendiratta, Director of the American Institute of Indian Studies, whose efforts helped to ensure the success of my research in India.

Among the many friends and hosts at various times during my work, I wish to thank especially the staff and scholars of the Centre for Human Sciences (previously Mission Archeologique de France en Inde) in the Cultural Section of the French Embassy. To other friends and family members, I owe a special debt. These people provided the stimulation, humor and perspective that sustained me throughout the years of research and writing, making it both worthwhile, and a genuine pleasure.

The University Museum
University of Pennsylvania
1991

Steven A. Weber
List of Figures

2.1 South Asian chronology 5
2.2 Map of Harappan sites 7
4.1 The temporal and spatial distribution of South Asian sites with archeobotanical finds 24
4.2 Numbers of taxa recovered from occupations containing archeobotanical material according to region on South Asia 24
4.3 Numbers of taxa identified from occupations containing archeobotanical material according to time period 25
4.4 The numbers of occupations containing various categories of taxa by region 25
4.5 The numbers of occupations in South Asia containing various cereals according to time period 27
4.6 The numbers of occupations in South Asia containing various legumes according to time period 27
4.7 The numbers of occupations in South Asia containing various oilseed/fiber plants according to time period 28
4.8 The numbers of occupations in South Asia containing various fruits according to time period 28
5.1 Map of Gujarat, with archeological sites, including Rojdi 34
5.2 Map of site area 35
5.3 Map of Rojdi, showing excavated areas 38
5.4 Species ratios of domesticated mammals at Rojdi 46
5.5 Cattle kill patterns based on epiphyseal fusion 47
6.1 Types and percentages of samples collected according to period of occupation 54
6.2 Percentage of archeobotanical remains by site region 55
6.3 Percentage of archeobotanical remains by time period 55
7.1 Percentage of archeobotanical material from each Rojdi occupation that is archeologically secure 63
8.1 Likely Rojdi A annual farming activities
8.2 Rojdi A occupation’s relation to its subsistence base
8.3 Rojdi A subsistence activities and their territory
8.4 Likely Rojdi C annual farming activities
8.5 The common plant-based subsistence at Rojdi, comprising 13 recurring taxa
8.6 Density, ubiquity and percentage of four main recurring taxa probably used for food in Rojdi A, B and C
8.7 Differences in percentage between Rojdi A, B and C millets and millets with the addition of C. album
8.8 Differences in ubiquity between Rojdi A, B and C millets and millets with the addition of C. album
8.9 Cultivation at Rojdi based on estimates of likely food plants for each occupation
8.10 Based on ubiquity, the distribution by occupation of the five most common Rojdi taxa
8.11 Based on percentages the distribution by occupation of the five most common Rojdi taxa
8.12 Based on density, the distribution by occupation of the five most common Rojdi taxa
8.13 Temporal distribution within Rojdi of Eleusine coracana
8.14 Temporal distribution within Rojdi of Panicum miliare
8.15 Temporal distribution within Rojdi of Chenopodium album
8.16 Temporal distribution within Rojdi of Setaria
8.17 Millet percentages for Rojdi A, B and C
8.18 Temporal distribution of weed plants for Rojdi
8.19 Indications for habitat change around Rojdi
8.20 Number of different taxa identified for Rojdi A, B, and C
8.21 Most likely place of origin for Rojdi material
9.1 The types of human involvement associated with the 13 taxa included in Rojdi plant complex
9.2 The plant-based food procurement system for Rojdi
9.3 Process of explanation for the changing Rojdi seed record
9.4 Pathways for change in Rojdi plant procurement system
10.1 Main crop plant occurrences in Mature Harappan Phase
List of Tables

4.1 Plant names for common recurring crop taxa 23
5.1 Rojdi animal remains 47
5.2 Rojdi carbon-14 dates 49
5.3 Rojdi chronology incorporating building levels, carbon dates, and preliminary ceramic periods on the North Slope, Main Mound and South Extension 50
7.1 Rojdi botanical counts and identifications by period of occupation 62
7.2 Rojdi botanical remains, their counts and distribution 64
8.1 Distribution of Rojdi A samples, soil and seeds 102
8.2 Types of Rojdi A samples 103
8.3 Material recovered from Rojdi A by taxa 104
8.4 Distribution of Rojdi A taxa represented by more than 20 seeds by trench and stratum 105
8.5 Differences in taxa counts between Rojdi A1 and Rojdi A2 Trench 46L 111
8.6 Summary of information about possible crop plants found in Rojdi A soil 112
8.7 Distribution of Rojdi B samples, soil and seeds 117
8.8 Material recovered from Rojdi B by taxa 119
8.9 Types of Rojdi B samples 120
8.10 Distribution of Rojdi B taxa by trench and stratum 120
8.11 Differing counts concerning security for possible crop plants found in Rojdi B soil 121
8.12 Distribution of Rojdi C samples, soil and seeds 126
8.13 Types of Rojdi C samples 127
8.14 Material recovered from Rojdi C by taxa 128
8.15 Differing counts concerning security for possible crop plants and other plants occurring in significant numbers in Rojdi C 130
8.16 Summary of information about possible crop plants in Rojdi 136
8.17 Distribution of Rojdi C/D samples, soil and seeds 139
8.18 Material recovered from Rojdi C/D by taxa 140
8.19 Types of Rojdi C/D samples 141
8.20 Comparisons of percentage, ubiquity and density of archeobotanical material only found in Rojdi A, B and C 143
8.21 Common characteristics of the cultivation of millets 146
8.22 Rojdi archeobotanical remains with above average occurrence 148
10.1 Cropping season of main food plants recovered in archeological sites according to region and site of occurrence 176
10.2 Time of first occurrence of South Asian crop plants 180

CHAPTER 1

The principal aim of botany remains to study and understand the life processes of living organisms through the phases of their life cycle. This requires an integration of knowledge and techniques from many different fields, including botany, zoology, biology, geology, chemistry, and physics. The study of botany is divided into several branches, each focusing on different aspects of plant life.

Paleoethnobotany has become an important field of study, particularly in the context of prehistoric cultures. It involves the study of ancient plant remains found in archaeological sites to understand the diet and environment of past societies. This field is crucial for understanding the relationship between humans and their environment in the past.

In this book, the focus is on the region of the Harappan civilization, which is known for its advanced culture and urban planning. The collection of plant remains from this region provides insights into the diet and environment of the Harappans, as well as the agricultural practices of the time.
CHAPTER 1

Introduction

The principal aim of this research project was to interpret the archeobotanical remains at the site of Rojdi, in northwest India, with reference to diet and environment and within a socio-economic framework. By regarding human-plant interactions as essentially responses to both social and natural opportunities and constraints, we can approach a number of specific issues concerning Rojdi, the wider region of Gujarat, and ultimately the Indus Civilization as a whole.

Paleoethnobotanical research in South Asian archeological sites has in general been limited to noting the presence of archeobotanical remains at particular time periods. As a consequence, little is known about how the distribution of plant remains changes through time at a particular site, or through the phases of evolution of Harappan culture as a whole (Vishnumittre and Savithri 1982). No more than 80 sites in all of South Asia dating to earlier than 1000 B.C. have yielded plant remains of some form. Few of these sites contained more than a single taxon or represented more than an accidental find. Although the limited data base has hampered our ability to infer the occurrence and change of plant-use patterns, it has by no means impeded the construction of theories or models which attempt to explain Harappan subsistence. It is important to assess the status of our knowledge periodically, and examine critically the theories that have been developed which use this information. The most useful way in which to do this is to collect new data, most importantly data which includes differing portions of plant material at various levels of occupation within South Asian sites.

The collection of this data must commence at the level of the single site. A single site is an easily defined unit of analysis that is free of the ambiguities that presently plague our definitions of the Harappan Civilization and its various subregions. The single site that is the focus of this book is that of Rojdi, which, while being located in a peripheral region of the Harappan Civilization, namely Gujarat, has artifactual material which associates it with the 'Harappan Cultural Tradition'. Since it was
occupied from the middle of the third millennium B.C. to the beginning of the second millennium B.C., which coincides with a critical period of transition from the Mature Harappan Phase to the Late Harappan Phase, an in-depth analysis of the Rojdi subsistence system should add to our knowledge not only of this site, but also of this region of Gujarat, and perhaps of the Harappan Tradition in general.

A paleoethnobotanical research project at Rojdi was therefore developed, with its primary purposes to document the inhabitants' use of cultivated and wild plants to examine variability and change in that use, to provide information on the habitat, and to attempt to identify and differentiate all human-induced and naturally induced changes occurring in the local environment during all phases of occupation. A secondary purpose was to examine the wider significance of the Rojdi data by comparing the Rojdi archeobotanical record with material collected from other sites, and to attempt to account for the variability in the temporal and spatial distribution of plant remains. Apparent variability in archeobotanical distributions from South Asian sites has already been used in theories dealing with plant origins and movements (e.g., Harlan 1976, Hutchinson 1976, Costantini 1979a), related population and settlement dynamics (e.g., Possehl 1986, Jarrige 1985), the evolution of region-wide subsistence systems (e.g., Allchin 1977, Possehl 1979:539, Ratnagar 1986), influence from areas outside South Asia (e.g., Sarma 1972, Possehl 1986), and differing plant-use strategies among local populations (e.g., Weber 1988, 1989a). However, biases in the sampling and/or methods of analysis have not always been recognized. Critical examination of this data, along with the use of data from Rojdi, should lead to a better understanding of the human-plant interrelationship during Harappan times.

A further, subsidiary aim of this work is to develop new explanations for plant occurrences and their evolution in South Asian prehistory. These new explanatory models must be tested by future work.

The following chapters include attempts to address certain issues and answer some fundamental questions about subsistence and plant use at Rojdi and beyond. These include:

1. **Description and Interpretation of the Rojdi Archeobotanical Record**

What plant taxa can be identified from the occupational (i.e., archeological) deposits of Rojdi, and what were their possible uses? What does their presence suggest about the condition of the local habitat and the types of environmental constraint imposed on the inhabitants? What does the proportional representation of each taxon suggest regarding the settlement, its subsistence strategy, farming practices, cropping seasons, water management system, and human involvement itself? How do plant identifications compare how well do they fit its systems?

2. **Description and Int Record over Time**

What changes in the phases of occupation c for changes occurring in human-induced envoir seen at Rojdi identifia second millennium?

3. **Description and Int botanical Material Rec**

Was Rojdi part of a regi of plant use typical fo common elements are interrelationships betw cultivated ones, and bet are the implications reg and what is the signif indigenous cultigens on What are the possible c routes could they have
identifications compare to those from other sites of comparable age, and how well do they fit into existing theories about Harappan subsistence systems?

2. Description and Interpretation of Change in the Rojdi Archeobotanical Record over Time

What changes in the Rojdi plant record can be identified during the phases of occupation of the site? What are the range of possible causes for changes occurring during the Rojdi occupation? Are dietary shifts or human-induced environmental changes indicated? Are the types of change seen at Rojdi identifiable in other sites around the beginning of the second millennium?

3. Description and Interpretation of the Wider Significance of the Archeobotanical Material Recovered at Rojdi

Was Rojdi part of a regional subsistence system and does it reflect a pattern of plant use typical for Harappans or Søren Harappans? What, if any, common elements are evident in Søren Harappan diet regarding the interrelationships between plants and animals, between wild plants and cultivated ones, and between indigenous and non-indigenous species? What are the implications regarding interaction with other regions and peoples, and what is the significance and impact of both indigenous and non-indigenous cultigens on Rojdi and on the Harappan Civilization as a whole? What are the possible origins of the non-indigenous species and by what routes could they have entered South Asia and Rojdi?