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Abstract

The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved

a large body size and slower life history, which likely increased zoonotic pathogen

pressure. Evidence for this increase includes increased zoonotic infections in mod-

ern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH com-

pared to other primates, and divergence in immune-related genes. These all point

to change, and probably intensification, in the infectious disease environment of

Homo compared to earlier hominins and other apes. At the same time, the brain,

an organ in which immune responses are constrained, began to triple in size. We

propose that the combination of increased zoonotic pathogen pressure and the

challenges of defending a large brain and body from pathogens in a long-lived

mammal, selected for intensification of the plant-based self-medication strategies

already in place in apes and other primates. In support, there is evidence of medic-

inal plant use by hominins in the middle Paleolithic, and all cultures today have

sophisticated, plant-based medical systems, add spices to food, and regularly con-

sume psychoactive plant substances that are harmful to helminths and other path-

ogens. We propose that the computational challenges of discovering effective

plant-based treatments, the consequent ability to consume more energy-rich ani-

mal foods, and the reduced reliance on energetically-costly immune responses

helped select for increased cognitive abilities and unique exchange relationships in

Homo. In the story of human evolution, which has long emphasized hunting skills,

medical skills had an equal role to play.
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1 | INTRODUCTION

Every day, most adults deliberately consume plant substances that

contain few, if any, macronutrients but that have potent pharmacolog-

ical properties. Globally, farmers grow over one million tons of black

pepper (Piper nigrum) and other Piper species every year, for example,

along with 6.5 million tons of tea (Camellia sinensis), 10 million tons of

coffee (Coffea spp.), 6.7 million tons of tobacco (Nicotiana tabacum),

and 1.7 million tons of areca nuts (Areca catechu) (Food and Agricul-

ture Organization, 2019).

Apparently mundane black pepper contains numerous bioactive

compounds that are effective against a wide range of pathogens and

have other medically useful effects. Many of these effects are linked

to the alkaloid piperine (Takooree et al., 2019), which is also psycho-

active, crossing the blood brain barrier and modulating γ-aminobutyric

acid (GABA) type A receptors (Eigenmann et al., 2016). Tea, the

world's most popular beverage after water, has about 700 bioactive

compounds, including catechins, theanine, caffeine, and volatiles (Wei

et al., 2018), with numerous health and psychoactive effects and anti-

microbial activity (Bansal et al., 2013; Nonthakaew et al., 2015; Zhang

et al., 2019). Over 90% of a large representative US population sample

had urinary biomarkers of caffeine (Rybak et al., 2015). Beyond these

substances, other plant-based “recreational” drugs such as cannabis,

cocaine, and opioids, as well as hundreds of additional spices, are

widely consumed on a daily basis for their psychoactive and other

effects.

Traditional medicine, a cross-cultural universal (Brown, 1991),

also involves the consumption of pharmaceutical plant substances

administered by specialists such as healers and shamans. Because

access to Western medicine is limited in low- and middle-income

countries (LMICs), where about 85% of the global population resides,

most people depend on traditional medicinal knowledge when sick

(Johns, 1990; Kim, Kim, et al., 2020; WHO, 2019). Traditional medi-

cine even informs drug discovery in Western medicine (Atanasov

et al., 2015, 2021; Porras et al., 2021; Silva et al., 2016). Willow bark,

for instance, has been used to treat pain for thousands of years. The

active ingredient, isolated in the nineteenth century, is aspirin

(Desborough & Keeling, 2017). The 2015 Nobel Prize in Medicine was

awarded to Chinese scientist Tu Youyou for isolating the antimalarial

compound artemisinin from sweet wormwood, a traditional Chinese

medicine used to treat fevers (Nobel Prize, 2015). Traditional plant-

based medicines often work.

Although Westerners classify some of these substances as foods

(black pepper), some as recreational drugs (tobacco), and some as

medicines (willow bark and sweet wormwood), all of them are plant

substances rich in pharmacological compounds. We will argue here

that the ubiquitous use of these substances is a behavior that evolved

from the self-medication strategies used by ape ancestors to fight

pathogens (Huffman, 2003). Currently, 9149 pathogen species are

known to infect 1835 mammal host species (Farrell et al., 2020), with

the human species infected by the greatest number (2064). See

Figure 1.

Humans have experienced a number of major epidemiological

transitions throughout our evolution. Currently, humans are

experiencing an unprecedented decline in morbidity and mortality

from infectious diseases following the 19th century discovery of the

germ theory of disease and the development of sanitation technolo-

gies, vaccines, and antibiotics. At the same time, there is a rapid

Arthropod (515)

Bacteria (1196)

Helminth (4286)

Protozoa (416)

Virus (696)

Carnivora
(195)

Chiroptera
(282)

Humans
(1)

Primates
(208)

Rodentia
(582)

Ungulates
(179)

F IGURE 1 Associations of pathogen species with mammalian host species, with pathogens grouped by major categories and mammals
grouped by Order, except that humans are plotted separately from other primates. The widths of the bars are proportional to the number of
associations in that Order (i.e., a combination of the number of species per mammalian Order and the number of pathogens that infect each
species). The heights of the bars indicate the proportions of associations with each pathogen category. Numbers indicate the number of distinct
species in each category of pathogens (rows) or mammal Order (columns). The numbers for humans are biased upward by research effort. Data
from Farrell et al. (2020) filtered to display only the most speciose mammalian Orders and most common pathogen categories.
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emergence of new human infectious diseases and the evolution of

antimicrobial drug resistant pathogen strains (Barrett et al., 1998).

Much earlier, during the Neolithic, c. 10 thousand years ago (kya),

greater sedentism, population size, population density, and animal

domestication increased human exposure to zoonotic pathogens and

created conditions required for sustained human-to-human transmis-

sion (Barrett et al., 1998; for some genetic evidence, see Domínguez-

Andrés et al., 2021). Prior to this, it has been thought, small nomadic

populations of dispersed Pleistocene hunter-gatherers could not sus-

tain the acute communicable pathogens common in large sedentary

communities. This transition might have started as modern humans

colonized Eurasia, however (Houldcroft & Underdown, 2016), as there

is evidence of strong selection during the Upper Paleolithic on human

proteins that interact with viruses (Enard & Petrov, 2020; Souilmi

et al., 2021).

Here, we focus on an epidemiological transition that likely

occurred long before these better known transitions: a shift and per-

haps increase in zoonotic pathogen pressure as the human lineage

transitioned from a mostly plant-based diet to a more carnivorous

niche, triggering changes in life history and social organization, near

the beginning of the Pleistocene, c. 2.6 mya. We propose that this

transition selected for changes in investment in immunity, which pro-

vides the critical benefit of eliminating pathogens, but also causes tis-

sue damage and incurs substantial energetic costs that must be traded

off against other important energy-consuming investments, such as

growth and reproduction (Blackwell et al., 2010; Demas et al., 1997;

Garcia et al., 2020; Martin et al., 2011; McDade et al., 2016;

Muehlenbein et al., 2010; Nystrand & Dowling, 2020; Schulenburg

et al., 2009; Shattuck-Heidorn et al., 2017; Urlacher et al., 2018). To

reduce these costs, we argue that there was selection for increased

use of antiparasitic plant compounds in the form of traditional medi-

cines, spices, and “recreational” plant drugs. Along with cooking, use

of these compounds permitted greater consumption of energy-rich

meat and reduced energetically expensive immune responses, thus

helping create the conditions for a dramatic increase in brain size in

the human lineage.

2 | CARNIVORY IN HOMO

Although vertebrate meat eating is widespread across extant pri-

mates, with the most common prey species being, in order, birds

(including eggs), reptiles, amphibians, mammals, and fish (Watts,

2020), meat is probably not an important source of either energy or

protein even in chimpanzees, who are some of the most regular meat

consumers among the non-human primates (invertebrates, on the

other hand, are nutritionally important for many primate species,

Rothman et al., 2014; Watts, 2020). African great apes, the closest liv-

ing human relatives, subsist mostly on plants, primarily fruits and

leaves (Berthaume & Schroer, 2017; Pontzer & Wood, 2021). The last

common ancestor (LCA) of humans and chimpanzees, thought to have

lived during the late Miocene, was therefore possibly a frugivore

(Almécija et al., 2021; Young et al., 2015).

As African forests diminished, grasslands expanded, and seasonal-

ity intensified from the late Miocene into the Pliocene c. 6–5 mya, a

new clade of apes—hominins—emerged with a more committed ter-

restrial lifestyle in open habitats. Craniodental traits, tooth wear pat-

terns, and paleoecological contexts indicate a substantial shift in diet

involving greater masticatory processing of food relative to extant

apes, probably involving decreased consumption of C3 vegetation

(e.g., fruits and leaves) and increased consumption of C4 vegetation

(e.g., grasses, underground storage organs), albeit retaining dietary

flexibility (considerable uncertainty remains in dietary reconstruction,

however, Daegling et al., 2013; Lacruz et al., 2019; Quinn, 2019;

Wynn et al., 2016).

The earliest fossil evidence of Homo coincides with the transition

from the Pliocene to the Pleistocene 2.6 mya (Ant�on et al., 2014),

when the Earth entered full glacial/interglacial cycles with hemi-

spheric glaciations, strongly impacting African vegetation and herbi-

vore communities (Couvreur et al., 2021). The brain and body of early

Homo were somewhat bigger compared to australopithecines, and

dentition reduced (Ant�on et al., 2014), indicating that our lineage had

again entered a new dietary niche, this time involving less masticatory

processing. A range of evidence, including stone tool cut marks on

bones, leave little doubt that vertebrate meat, much of it from large

mammalian prey like megaherbivores and grazers, was an important

component of Homo diets (Ant�on et al., 2014). Although Homo might

have acquired up to 70% of its calories from meat (Ben-Dor

et al., 2021), the prevailing view is that it evolved as a diet generalist,

able to flexibly adapt to different trophic levels as conditions required

(e.g., Ant�on et al., 2014; Crittenden & Schnorr, 2017; Pontzer &

Wood, 2021). Nevertheless, compared to <5% meat in chimpanzee

diets (Watts, 2020), the proportion of animals in the diet of contem-

porary hunter-gatherers is quite high, ranging from 40%–60%

(Pontzer & Wood, 2021).

3 | MEAT EATING LIKELY INCREASED
ZOONOTIC PATHOGEN PRESSURE

Ancestrally, meat likely harbored more pathogens than plant foods.

Although plant foods are often contaminated with animal pathogens,

for example, in feces, the threat from plant pathogens themselves is

relatively low. A few plant pathogens appear capable of cross-

kingdom infections, but human infections with plant pathogens mostly

occur in immunocompromised or physically injured individuals. In gen-

eral, the substantial differences between plant and animal cell walls

and immune systems are major barriers to pathogen spillover from

plants to animals (Kim, Yoon, et al., 2020). Moreover, as we discuss in

detail later, plant foods are infused with anti-infective compounds.

Prey animals, in contrast, would often have been infected with

pathogens adapted to primates and other mammals that had a high

risk of spillover. There are numerous well-documented examples of

spillover from prey to predators, with some carnivore populations suf-

fering catastrophic declines. Spillover outcomes in predators can vary

from asymptomatic infections, such as feline immunodeficiency virus

HAGEN ET AL. 3

 26927691, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajpa.24718, W

iley O
nline L

ibrary on [23/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



in pumas preying on bobcats, to variable clinical outcomes, such as

anthrax in wolves preying on bison, to virulent infections, such as

bovine tuberculosis in coyotes preying on white-tailed deer

(Malmberg et al., 2021). There is even evidence that some chimpanzee

and bonobo viruses spilled over from their primate prey (Calvignac-

Spencer et al., 2021). Once killed, prey is further colonized by patho-

genic bacteria from the dead animal itself, the animals that fed on it

(including insects), and the soil, water, and air (Ragir et al., 2000; Smith

et al., 2015).

To reduce infections from prey, predators have evolved special

physiological and behavioral resistance mechanisms. Although evi-

dence of increased investment in cellular immunity is mixed, at least

among captive carnivores (Nunn et al., 2003), carnivores have excep-

tionally low gastric pH and avoid preying on closely related species

(Malmberg et al., 2021). Carnivores frequently kill other carnivores,

for example, but rarely eat them, probably due to the heightened risk

of infection (Mole�on et al., 2017).

In contrast to australopithecines, members of genus Homo would

have had intimate, near-daily contact with mammalian prey and pred-

ators, and their pathogens and arthropod disease vectors. Most

human infectious diseases indeed originate in non-human animals

(Han et al., 2016). Many zoonoses are enzootic (stably established) in

animal populations and transmit from animals to people but then have

little or no subsequent person-to-person transmission (Karesh

et al., 2012). Rabies, for example, is a deadly zoonotic virus infecting

the central nervous system (CNS) (Fisher et al., 2018) that humans

acquire from infected carnivores or bats but do not transmit to other

humans. Today, about 60,000 people die every year from rabies

acquired from infected dogs (Hampson et al., 2015). Other deadly

zoonoses, such as HIV, have substantial person-to-person transmis-

sion. Between 1940 and 2004, over 300 infectious diseases emerged

in the global human population, 60% of which came from animals,

mostly wildlife (the remainder were newly evolved strains and previ-

ously rare pathogens that increased in prevalence, Jones et al., 2008).

On average, about 10% of mammalian species within the most

specious orders are zoonotic hosts, with rodents and bats being the

most specious, and therefore hosting a large fraction of zoonotic dis-

eases. Ungulates—common human prey species—stand out, however,

in that 32% of species are zoonotic hosts, as are a large fraction of pri-

mate and carnivore species (Han et al., 2016; Han et al., 2021). See

Figure 2.

A key predictor of bacterial and viral zoonotic status is having a

host that is a short phylogenetic distance from humans, an effect

driven largely but not entirely by primates (Olival et al., 2017; Shaw

et al., 2020). For helminths, on the other hand, diet class is the stron-

gest predictor of a wild species sharing a helminth species with

humans. Specifically, herbivores and carnivores are more likely to

share helminth parasites with humans than are wild omnivorous and

insectivorous mammals, probably because the life cycles of many hel-

minths depend on trophic interactions – consumption of their eggs

and cysts, or by contact with larvae (Wells et al., 2018). Modern

hunter-gatherers tend to avoid hunting primates, carnivores, and

rodents (Bugir et al., 2021), perhaps due in part to the higher risk of

spillover.

3.1 | Increased zoonoses in commercial hunters
(bushmeat), Congo Basin foragers, and workers in
animal-related occupations

Hunting is widely considered to be a major risk factor for zoonotic

spillover. Bushmeat—wildlife hunted for human consumption—

Primates

Chiroptera

Soricomorpha

Ungulates

Rodentia

Carnivora

0 20 40 60 80

Number of unique zoonoses

Pathogen

Helminth
Protozoa
Bacteria
Virus

F IGURE 2 The number of unique zoonoses caused by each pathogen type in the six most species-rich mammal groups: the carnivores, bats
(Chiroptera), primates, rodents, shrews and moles (Soricomorpha), and the hoofed mammals (ungulates, which combine the orders Perissodactyla
and Artiodactyla and exclude domesticated species). Data and caption from Han et al. (2016).
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provides food for hundreds of millions of rural people living in poverty,

and in the Congo Basin alone involves more than a million tons of meat

per year (Saylors et al., 2021). Bushmeat activities have been linked to

numerous virulent disease outbreaks, including Ebola, HIV, monkeypox,

SARS-CoV-1, and possibly SARS-CoV-2 (Guan et al., 2003; Kurpiers

et al., 2016; Peros et al., 2021). Pathogen spillover from bushmeat can

occur through consumption, but major risks come from exposure to body

fluids and feces during handling and butchering (Milbank & Vira, 2022). A

study investigating the origins of SARS-CoV-1 in a key market, for exam-

ple, found that 31% of individuals involved in wild animal trade or slaugh-

ter had SARS-CoV-1 antibodies whereas only 5% involved in trading

vegetables did (Guan et al., 2003). A review found 133 reports of disease

involving 60 pathogens in 58 bushmeat species, mostly mammals (95%);

the most common zoonotic pathogens were helminths (37%) and bacte-

ria (33%), followed by viruses and protozoa (15% each) (Peros

et al., 2021). An important caveat is that although such spillovers are a

global phenomenon, in only about half the cases was evidence linking

specific spillovers to wild meat processing and consumption of good

quality (Milbank & Vira, 2022).

Congo Basin foragers are also at increased risk of acquiring zoo-

notic infections compared to neighboring farmers, and infections are

strongly associated with severe bites from apes during hunting. Viral

zoonoses include simian foamy virus (Betsem et al., 2011) and human

T-lymphotropic virus type 1 (HTLV-1) (HTLV-1 originates from simian

T-lymphotropic virus type 1, Filippone et al., 2015). There is also a

higher prevalence of antibodies to monkeypox among Aka foragers

compared to neighboring farmers (Reynolds et al., 2007), probably

because Aka are more likely to engage in behaviors, such as visiting

the forest and interacting with animals, that expose them to monkey-

pox (Guagliardo et al., 2019). In a population of Efe foragers, the prev-

alence of antibodies to Ebola virus, a zoonotic pathogen whose animal

reservoir is probably bats, are among the highest ever reported

(18.7% vs. 2%–3.5% in the Republic of the Congo and the Democratic

Republic of the Congo, Mulangu et al., 2016; Steffen et al., 2019).

In a more cosmopolitan perspective, veterinarians have a higher risk

of zoonotic infections than control groups (Baker & Gray, 2009), and

members of other occupations that involve animals, such as livestock

farm laborers, livestock/dairy producers, slaughterhouse workers, and

animal carers and forestry workers, also have higher infectious disease

risk (albeit not all zoonoses, Acke et al., 2021; Vonesch et al., 2019).

Taken together, all these patterns indicate that, compared to earlier

hominins, the more carnivorous Homo experienced increased zoonotic

pathogen pressure, likely selecting for increased invetment in immunity.

4 | CARNIVORY-RELATED SHIFTS IN
HUMAN LIFE HISTORY AND SOCIAL
ORGANIZATION ALSO AFFECTED
PATHOGEN PRESSURE AND INVESTMENT
IN IMMUNITY

The Plio-Pleistocene transition to carnivory in Homo was accompanied

by increases in body size and longevity, and changes in climate

variability, range size, population size, population density, and social

organization (Ant�on et al., 2014), all of which could also have altered

pathogen pressure, thereby also selecting for changes in investment

in immunity. We consider each of these in turn.

Intuitively, large, long-lived animals would have greater lifetime expo-

sure to pathogens and greater somatic investment, and should therefore

invest more in immunity (although there are many complications,

Banerjee et al., 2017; Donnelly et al., 2015, 2017; Downs, Schoenle,

et al., 2020; Han et al., 2015; Kieft & Simmons, 2015; van Boven &

Weissing, 2004). Empirically, body size is positively associated with the

prevalence of viruses and bacteria in primates and ungulates, with macro-

parasites in primates and carnivores (Han et al., 2015), and with pathogen

diversity, an index of pathogen pressure (Bordes & Morand, 2009), across

animal, plant, and fungal hosts (Kamiya et al., 2014).

Most studies of the fossil record conclude that body size in the

human lineage increased in the evolutionary transition from Australo-

pithecus to Homo, probably as a consequence of the higher quality diet

(Grabowski et al., 2015; McHenry, 1992; Püschel et al., 2021; Will

et al., 2017). Indeed, carnivores tend to have large body sizes (Cooke

et al., 2022). Longevity is much harder to infer from the fossil record,

but a reasonable conjecture is that increased body size in H. erectus

entailed an increase in longevity (briefly reviewed in French &

Chamberlain, 2021). Modern humans fall toward the higher end of the

distribution of mammalian body masses and have one of the longest

lifespans, traits that are correlated across species. Even given our large

body size, the long lifespan of modern humans is an outlier among pri-

mates (Miller et al., 2019).

Empirical evidence that larger animals invest more in immunity

is starting to emerge. A study of 26 felid species found that larger

species, several of which evolved in ecological niches overlapping

with those of early Homo (lions, leopards, cheetahs), had greater

white blood cell counts (an index of investment in immunity) than

smaller species (Naidenko & Alshinetskiy, 2020). Mammal meta-

bolic rate scales hypometrically with body mass (Y¼ aMb, b<1),

but neutrophils, part of the innate immune system, scale hypermetri-

cally with body mass in over 250 mammalian species (b>1), clear evi-

dence of a size-related increase. Lymphocytes, which participate in

both the innate and adaptive immune systems, scale nearly isometri-

cally (b�1) (Cornelius Ruhs et al., 2021; Downs, Dochtermann,

et al., 2020; see also Ruhs et al., 2020), as does antibacterial activity in

serum in over 160 terrestrial mammals (Downs, Schoenle,

et al., 2020). These patterns suggest size-related increases in immune

investment.

Pathogen diversity is also positively related to both host range

size and population density across animal, plant, and fungal hosts

(except range size in arthropods, Kamiya et al., 2014). These patterns

have opposite implications for changes in pathogen pressure in early

Homo. The population range sizes of early Homo species are esti-

mated to be about seven to 10 times larger than those of Australo-

pithecus species (Ant�on et al., 2002), suggesting increased pathogen

pressure.

Larger terrestrial vertebrates, including mammals, typically have

lower population densities (Santini et al., 2018), on the other hand,

HAGEN ET AL. 5
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suggesting that, compared to its smaller hominin ancestors, Homo

did too. Carnivory would have further reduced population density

because transfer of energy and nutrients from lower to higher tro-

phic levels is inefficient (10,000 kilograms of prey supports about

90 kilograms of a given species of carnivore, Carbone &

Gittleman, 2002). As the proportion of meat in the diet increases,

population density in ethnographically known hunter-gatherers

decreases (Zhu et al., 2021), and in high productivity environments

(e.g., tropics, subtropics), lower population density is associated with

lower pathogen stress (Tallavaara et al., 2018; but see critique in Zhu

et al., 2021). As a larger-bodied Homo increased in trophic level in

the Lower Paleolithic its population density would therefore likely

have decreased relative to its smaller-bodied hominin predecessors

with plant-based diets. Decreased population density would have

decreased pathogen pressure in Homo; pathogen pressure could also

limit population density. (Much later, in the Upper Paleolithic, popu-

lation densities of Homo sapiens appear to have increased,

French, 2016).

Pathogen pressure is also affected by climate change because

many species survive by moving, bringing their pathogens into contact

with new species (Carlson et al., 2022). Climate variability increased

during the Pleistocene because the distribution of the continents and

low atmospheric greenhouse gas concentrations made the climate

susceptible to changes in insolation due to the orbital forcing on

40 kyr and later 100 kyr cycles (Potts, 2012; von der Heydt

et al., 2021). There is also evidence for more rapid, and sometimes

abrupt unidirectional changes in the environment of early Homo

(Lupien et al., 2020, 2021). Increased Pleistocene environmental vari-

ability might therefore have increased the frequency of spillovers into

the human lineage.

Lastly, across primates and carnivores, mating promiscuity is

positively associated with increased investment in immunity, proba-

bly due to increased risk of sexually transmitted infections (STIs)

(Nunn, 2002; Nunn et al., 2003). Theoretical results indicate that

under various conditions, STIs can select for a shift toward a monog-

amous mating system (Kokko et al., 2002; McLeod & Day, 2014).

The reduced sexual dimorphism in Homo erectus compared to earlier

Australopithecines suggests a shift in their mating system, perhaps

toward greater monogamy (Villmoare et al., 2019), which is also

widespread in carnivores (Macdonald et al., 2019). Given that one of

the today's most dangerous epidemic diseases, HIV, is a zoonotic

STI, and that one of the most common STI's is from a Pleistocene

spillover event (HSV-2 and genital herpes – see below), it is possible

that increased zoonotic spillovers of STIs in Homo contributed to a

shift toward monogamy.

In summary, meat-eating, increased body size, lifespan, range size,

and climate variability would likely have increased pathogen pressure

and investment in immunity in Homo, although lower population den-

sity could have partially offset these increases. Increased pathogen

pressure might then have been one selection pressure for a shift in

the mating system toward monogamy, which would also have reduced

pathogen pressure. Overall, most changes point to an increase in

pathogen pressure and investment in immunity.

5 | EVIDENCE OF CARNIVORY-RELATED
PLEISTOCENE SPILLOVERS INTO HOMININS

Taeniid tapeworms, characteristic parasites in carnivorous mammals,

are one of the clearest examples of carnivory-related spillover to early

Homo. Cestodes (tapeworms) are parasites that, as adults, live and

produce eggs in their definitive host(s). The eggs are shed (e.g., in

feces) and enter an intermediate host in which the larvae develop.

The life cycle completes when the intermediate host is eaten by a

definitive host. Humans are the definitive host for Taenia saginata,

T. asiatica and T. solium, with domesticated ruminants as intermediate

hosts. These species are responsible for considerable disease burden

in contemporary human populations, especially when they infect the

nervous system (Carabin et al., 2017), a topic to which we shall return.

Morphological and genetic evidence suggests that these Taenia spe-

cies switched their definitive host, probably hyenas and/or lions, to

hominins who were hunting the same ungulate prey species

(Hoberg, 2006; Hoberg et al., 2001; Terefe et al., 2014).

Other possible examples of Pleistocene spillovers into humans

include herpes simplex virus 2 (HSV-2), which infects about 11% of

the population, causes most cases of genital herpes, and appears to

have spilled over from bonobos into the human lineage around 1 mya,

after bonobos diverged from chimpanzees c. 2.1 mya (Wertheim

et al., 2021). Helicobacter pylori, which infects the stomachs of about

half of all humans, causes inflammation and increased risk for stomach

cancer, appears to have spilled over into the human lineage from an

unknown host c. 88–116 kya, just prior to human migration out of

Africa (Linz et al., 2007; Moodley et al., 2012). The rare human T-cell

lymphotropic virus type II, found mainly among some Congo Basin

foragers, Native American populations, and intravenous drug users,

appears to have spilled over from a primate species at least 400 kya

(Vandamme et al., 2000). Other spillovers include various hepatitis

viruses (A, B, C, and GB viruses) (Houldcroft & Underdown, 2016;

Reperant et al., 2013), enteroviruses such as poliovirus (Reperant

et al., 2013), and Schistosoma spp (due to increasing use of open envi-

ronments, Mitchell, 2013). For reviews, see Houldcroft and Under-

down (2016), Mitchell (2013), Ledger and Mitchell (2019), Harkins and

Stone (2015), Reperant et al. (2013), Blerkom (2003), and Brinkworth

and Alvarado (2020).

5.1 | Infections of the CNS and the virulence
of newly emerged zoonotic pathogens

The transition to carnivory in the human lineage was accompanied by

a rapid increase in brain size, indicating that biological fitness

depended much more heavily on CNS functions. There are reasons to

believe that the carnivory-related increase in spillover risk increased

the risk of especially virulent infections, especially of the CNS.

Theoretical models of the evolution of virulence assume that

there is a tradeoff between virulence and transmission: faster replicat-

ing pathogens create larger populations, increasing their transmission

rate, but cause more host damage, increasing host mortality and thus

6 HAGEN ET AL.
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decreasing the time for the infected host to contact susceptible hosts

(reviewed in Cressler et al., 2016). Empirical evidence to date supports

the existence of this tradeoff (albeit with complexities, Geoghegan &

Holmes, 2018; Visher et al., 2021). In human zoonotic viral infections,

for instance, there is indeed a negative association between the

capacity for human-to-human transmission and case fatality rate

(CFR), an index of virulence (again, with caveats, Brierley et al., 2019;

Geoghegan et al., 2016). Pathogens should therefore evolve to opti-

mize virulence to maximize the number of hosts they can infect

(Visher et al., 2021).

Newly emerging zoonotic pathogens, however, are unlikely to

have phenotypes that optimize the virulence-transmission tradeoff

in the new host. They will therefore vary widely in their virulence

and transmission rates (Brierley et al., 2019; Bull & Ebert, 2008;

Visher et al., 2021). In addition, when the pool of susceptible hosts is

large there can be transient selection for greater virulence in newly

emerging pathogens (Berngruber et al., 2013; Bolker et al., 2010). An

analysis of zoonotic viruses found that those with limited or no

reported human-to-human transmission, suggesting they were

poorly adapted to humans, had CFRs ranging from 0% to 100%, with

mean = 31.5%, whereas those with reported endemic transmission,

suggesting they were better adapted to humans, all had relatively

low CFRs, with mean = 2.5% (Guth et al., 2019). The highest CFRs

after spillover were caused by zoonotic viruses from the hosts more

distantly related to humans, and thus less well-adapted, such as

viruses from ungulates, which were common prey species, and from
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F IGURE 3 (a) Human RNA virus primary tissue tropism versus transmission. Primary tissue tropism indicates the dominant organ system the
virus typically infects or targets (viraemic: only blood presence is known). No transmission: the virus infects humans but does not transmit to
other humans. Sustained transmission: sustained human-to-human transmissibility. (Viruses with intermediate transmission not depicted.) Data
from Brierley et al. (2019). (b) Zoonotic virus case fatality rate (an index of virulence) versus degree of human-to-human transmission. Each dot is
one virus species, or group of species with identical CFRs and degrees of transmission. Dot size represents the number of overlapping data
points. Dot color represents the CFR. Blue vertical lines represent mean CFRs for viruses with endemic and non-endemic transmission. Data from
Guth et al. (2019).
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bats, which inhabited the same caves as human ancestors (Guth

et al., 2019). See Figure 3b.

Importantly, novel and thus poorly adapted pathogens might

“accidentally” infect host tissues, such as the CNS, that fail to sup-

port onward transmission of the pathogen. Nevertheless, the host

immune system must defend those infected tissues. In a study of

human RNA viruses, for example (Brierley et al., 2019), the most

common primary tissue tropism for viruses with the lowest transmis-

sion level, indicating they were poorly adapted, was viraemic (only

blood presence is known) and neural. The highest transmission level,

indicating well-adapted, was gastrointestinal and respiratory – tis-

sues that can easily support onward transmission via feces, droplets,

and aerosols. See Figure 3a. Onward transmission pathways from

neural tissue are limited, but infection of neural tissue could be very

costly to the host. Indeed, neural tropism in RNA viruses is associ-

ated with high virulence (Brierley et al., 2019). As already noted,

rabies is a zoonotic RNA virus infecting the human CNS with no

onward transmission, indicating poor adaptation to this host, and

that is lethal.

Interestingly, larvae of T. solium, one of the tapeworm species

that switched definitive hosts from a carnivore into the human line-

age, can infect the brain. Ingested eggs hatch and migrate to various

tissues, including the CNS, a condition termed neurocysticercosis. Once

in the CNS the larval cyst might continue to grow, or die due to

immune response or treatment and then degenerate and calcify

(Sinha & Sharma, 2009). The clinical manifestations of neurocysticer-

cosis range from completely asymptomatic in the majority of cases, to

headaches, seizures, increased intracranial pressure, focal deficits,

meningitis, pressure on the spinal nerve, dementia and other mental

changes, dizziness, stroke, and death (Sinha & Sharma, 2009). Neuro-

cysticercosis, a common cause of epilepsy in rural, low income set-

tings (Stelzle et al., 2022), is a neglected tropical disease that has been

difficult to diagnose (Gripper & Welburn, 2017). Only now are MRI-

based population studies beginning to emerge, which have found

prevalence rates of 10%–20% in rural villages where raising pigs is

common (Brutto et al., 2017; Moyano et al., 2016). Even though most

cases of neurocysticercosis appear to be asymptomatic in these cross-

sectional studies, symptoms could appear over time, and there might

be undetected cognitive deficits in apparently asymptomatic individ-

uals. We will return to T. solium as a key example for our self-

medication hypothesis.

More generally, encephalitis (inflammation of the brain paren-

chyma) is a major source of disease burden globally (Feigin

et al., 2019), with mortality rates ranging from 5%–15% (mostly in

children, Venkatesan et al., 2019). A variety of pathogens are

implicated, which in children include enterovirus, parechovirus,

bacterial meningoencephalitis, influenza, herpes simplex virus, and

Mycoplasma pneumoniae (Britton et al., 2020), and in adults include

herpes simplex virus, Varicella-zoster virus, Japanese encephalitis

virus, Mycobacterium tuberculosis and Listeria monocytogenes

(Boucher et al., 2017). Arthropod-borne viruses such as Zika and

chikungunya are also increasingly implicated (Venkatesan

et al., 2019). Zoonotic SARS-CoV-2 seems to infect the brain,

causing encephalitis in a few individuals but perhaps “long covid”
symptoms in many more (Bauer et al., 2022; Davis et al., 2023).

There is also increasing evidence that a number of pathogens

establish latent infections in the CNS, that is, survive but do not

replicate until a later date. These include T. gondii, which provides

the textbook example of parasite manipulation of behavior

(Johnson & Johnson, 2021; Poirotte et al., 2016), and is implicated

in the death of a 2000-year-old hunter gatherer boy from

South Africa (Rifkin et al., 2020), as well as M. tuberculosis, HIV,

West Nile virus, herpes simplex virus, and Treponema pallidum

(syphilis) (Forrester et al., 2018).

Increased zoonotic spillovers in Homo might therefore have

selected for increased investment in immunity and especially

defense of the CNS through both immunological and behavioral

mechanisms.

6 | PHYSIOLOGICAL AND GENETIC
EVIDENCE FOR HUMAN-SPECIFIC IMMUNE
DEFENSES IN RESPONSE TO CHANGES IN
PATHOGEN PRESSURE

There is physiological and genetic evidence that immunity in humans

has diverged from apes and other primates, possibly in response to

increased meat eating and life history changes c. 2 mya, which sup-

ports arguments we make later that behavioral immunity also

diverged for the same reasons.

Physiologically, human stomach acid, which functions as an

important barrier to entry of pathogens into the gastrointestinal tract

(Martinsen et al., 2005), has a low pH, much lower than seen in herbi-

vores and omnivores, and on par with that seen in scavengers and

generalist carnivores (Beasley et al., 2015). Innate immune responses

also differ. Compared to most other mammals, the human immune

system is highly sensitive to lipopolysaccharide (LPS), a component of

the outer membrane of Gram-negative bacteria, mounting a robust

immune response to quantities about 1/10 of those needed to acti-

vate similar responses in macaques, baboons, and other mammals

(Brinkworth & Valizadegan, 2021). Although chimpanzees might be as

sensitive to LPS as humans (Brinkworth & Valizadegan, 2021), and

both species show stronger and more generalized innate immune

responses to viral and bacterial stimulation than macaques and

baboons, many more human genes are differentially upregulated in

response to LPS than in the chimpanzees, macaques, and baboons

(Hawash et al., 2021).

In general, the immune system also “sees” meat as dangerous:

animal foods are generally pro-inflammatory whereas plant foods are

anti-inflammatory (Alcock et al., 2012). See Figure 4.

Genetically, viruses appear to have driven �30% of all adap-

tive amino acid changes in the part of the human proteome

conserved within mammals (Enard et al., 2016). There is human-

chimpanzee divergence in regulatory sequences related to immune

genes (He et al., 2016; Jin et al., 2018), including in microglia

(brain immune cells, Xu et al., 2018), and there are human-specific
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coding genes related to immunity (Costantini et al., 2019), includ-

ing one expressed in microglia (Hayakawa et al., 2005). Because

positive selection on immune-related genes is common in primates

(van der Lee et al., 2017), divergent evolution of immune genes

could simply be due to Red Queen dynamics. About 2 mya, how-

ever, there was a loss-of-function mutation in CMAH in the

human lineage that eliminated biosynthesis of the common mam-

malian sialic acid Neu5Gc, which was a target for pathogens such

as Plasmodium, Escherichia coli, and coronaviruses; related genes

also evolved. Similar evolution of these genes in apes has not

occurred, nor has there been recent evolution of these genes in

humans (Moon et al., 2018), suggesting that the selection pressure

was increased carnivory-rated spillover c. 2 mya (Khan

et al., 2020). There is also evidence that resistance to Bacillus

anthracis, a zoonotic bacterium that spills over from ruminants

into humans, evolved early in modern human evolution (Choate

et al., 2021). Finally, unlike chimpanzees and other vertebrates,

humans have three high frequency apolipoprotein E alleles, which

are linked to meat-eating and improved immune defense, among

other things (Finch & Stanford, 2004; Vitek et al., 2009;

cf. Huebbe & Rimbach, 2017).

7 | THE BEHAVIORAL IMMUNE SYSTEM
INCLUDES CONSTITUTIVE AND INDUCIBLE
CONSUMPTION OF PHARMACOLOGICAL
SUBSTANCES

The behavioral immune system is a motivational system that reduces

infection risk, and therefore the energetic and other costs of immune

activation, by promoting pathogen avoidance via changes in cognition,

affect, and behavior – pathogen disgust is the canonical example

(Ackerman et al., 2018, 2021; Buck et al., 2018; de Roode &

Lefèvre, 2012; Schaller & Park, 2011). Meat avoidance is another pos-

sible example. Meat is seen as dangerous across cultures. A study of

food taboos among horticulturalists and foragers in the Democratic

Republic of the Congo, for example, found that nearly all involved ani-

mal foods, and many aimed to prevent illness and death

(Aunger, 1994). A study of food taboos in 78 cultures found that 85%

involved meat, likely due to the risk of pathogen transmission

(Fessler & Navarrete, 2003). Because spoilage risk is similar for differ-

ent animal foods, taboos regarding specific animal species are gener-

ally thought to be maladaptive (albeit imposing only a small nutritional

cost, Aunger, 1994). It is possible, though, that the taboos are not due
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to spoilage risk but instead originated after spillover events from par-

ticular species, which would warrant avoiding those species. Pork

taboos are common, for instance, perhaps because pigs host various

zoonoses, including Taenia solium – avoidance of pork and Muslim

faith (but not Christian faith) are both negatively associated with CNS

infections of this parasite (Stelzle et al., 2022; cf. Harris, 1997).

Cooking, which reduces pathogens in meat prior to consumption

(Attwell et al., 2015; Smith et al., 2015), is another possible example

of behavioral immunity; cooking also detoxifies food and increases

net energy extraction. Although cooking would reduce exposure to

pathogens in food that was about to be eaten, it would not have

reduced exposure to potential zoonoses when tracking, killing, and

butchering animals and scavenging meat. Moreover, even the earliest

(but highly contested) dates for the possible controlled use of fire,

1.7–1.5 mya, are about 1 million years after evidence of increased

meat eating c. 2.6 mya, and clear archeological evidence for the regu-

lar, controlled use of fire use only appears after 1 mya, with most evi-

dence after 500 kya (reviewed in Hlubik et al., 2019; MacDonald

et al., 2021). Further, several ethnographically known hunter-gatherer

populations eat raw animal foods (McCauley et al., 2020), and even in

modern populations that regularly cook animal foods, those who hunt

and butcher wildlife are at increased risk of zoonotic disease.

To consider how Homo might have evolved to reduce the costs of

zoonotic spillover that could not be mitigated by cooking, we further

develop the behavioral immunity concept, which is based on an anal-

ogy with physiological immunity. In physiological immunity, there is an

important distinction between constitutive and inducible immune

defenses. Constitutive defenses, which in humans include skin, saliva,

and restriction factors, are always active, thereby incurring a fixed

cost to develop and maintain whether they are needed or not. They

pay substantial dividends, however, if they prevent pathogens from

infecting and multiplying in the host, which would necessitate a much

costlier immune response and risks severe illness and death. Inducible

defenses, on the other hand, which in humans include pathogen pat-

tern recognition receptors and costly proliferation of leukocytes, only

incur a cost when activated upon contact with a pathogen, but the

delay in efficacy enables the pathogen to multiply and cause damage,

thereby requiring a substantial and costly immune response (the two

systems overlap to some extent) (Boots & Best, 2018; Hamilton

et al., 2008; Shudo & Iwasa, 2001; van Loon et al., 2006; Westra

et al., 2015).

7.1 | Plant chemical defenses as a “pharmacy” for
animals

In analogy with the inducible and constitutive arms of the physiologi-

cal immune system, we propose that as Homo experienced increasing

pathogen pressure, it increased investment in behavioral immunity by

more intensively co-opting plant secondary compounds through con-

sumption (Billing & Sherman, 1998; Hagen et al., 2009; Hagen

et al., 2013; Hardy, 2019; Huffman, 2003; Rodríguez et al., 1982;

Sullivan et al., 2008; Sullivan & Hagen, 2002). We conceptualize

regular consumption of pharmacological plant substances, regardless

of infection status, as a constitutive defense, and consumption upon

infection as an inducible defense.

The plant kingdom contains an estimated 105�106 chemically

unique structures, with 5000–15,000 structures per species, dwarfing

all other major taxonomic categories for known specialized metabo-

lites (Medema et al., 2021). Primary metabolic pathways—those pro-

ducing compounds vital for plant survival such as proteins, lipids, and

carbohydrates—are widely conserved across plant lineages and there-

fore contribute little to this chemical diversity, most of which com-

prises lineage-specific secondary compounds – those involved in, for

example, plant-pollinator signaling and herbivore defense (Li &

Gaquerel, 2021). Even fruits and nectars, which evolved to attract

seed and pollen dispersing animals, are chemically defended against

unwanted consumers (Cipollini, 2000; Dalling et al., 2020; González-

Teuber & Heil, 2009; Valenta et al., 2017). Plant defensive toxins typi-

cally target protein functions in plant consumers, including animal

neural receptors and other steps in neural signaling (Wink, 2015).

Plants are attacked by the same broad classes of pathogens that

attack humans and other animals: viruses, bacteria, protozoa, fungi,

helminths, and arthropods. Plant chemical defenses might therefore

also be effective against the pathogens of humans and other animals.

Indeed, a substantial fraction of anti-infective drugs approved in the

last four decades are either derived from plant or microbial products,

or inspired by them (Cicka & Quave, 2019; Harvey et al., 2015;

Newman & Cragg, 2020; Porras et al., 2021). The increase in antibiotic

resistant strains of pathogenic bacteria in particular, combined with

new high-throughput screening technologies, has renewed drug dis-

covery efforts focused on plant products (Atanasov et al., 2021;

Porras et al., 2021; Silva et al., 2016).

Over the course of evolution, local flora would have represented

a “pharmacy” for members of the human lineage and other animals

(Boppré, 1984). It is therefore plausible that there has been selection

over deep time to not only extract macronutrients from plants but

also to co-opt plant secondary compounds for their anti-infective

effects. Such self-medication could also allow some energy to be

redirected from immunity to growth, higher reproductive rate, or

other fitness-enhancing processes and activities. In a model insect

system, for example, use of antibiotics down-regulated immune-

related genes, upregulated growth-related genes, and increased

growth (Galarza et al., 2021). In humans, it would also have improved

an ability to safely exploit energy-rich animal foods, which along with

reduced immune costs would have helped enable the evolution of a

larger brain.

7.2 | Spices as a constitutive pharmaceutical
toolkit to manage enteric pathogen risk

Humans routinely add spices—plant substances high in secondary

compounds but low in macronutrients—to food, typically meat-based

dishes. Billing and Sherman (1998) proposed that because spices have

antimicrobial properties, and because foods, especially meat, contain
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dangerous microbes, this practice is adaptive, a hypothesis supported,

in part, by a positive association between mean national temperature,

a proxy of food-borne pathogen risk, and various indices of national

spice use. On this view, the routine addition of spices and other

medicinal substances to foods is a constitutive pathogen defense – it

is always active, incurring the cost of potential interference with phys-

iological functions but providing benefits by deterring infection and

subsequent pathogen growth.

A reanalysis of Billing and Sherman (1998) that included addi-

tional data and appropriately controlled for autocorrelation from

shared cultural ancestry and spatial proximity, and other potential

confounds, found no significant association between temperature and

spice use. Instead, spice use was associated with global patterns of

poverty and health outcomes (Bromham et al., 2021). These authors

went too far, though, in claiming “Patterns of spice use are not consis-

tent with an infection-mitigation mechanism” (p. 1), especially since,

accounting for autocorrelation, they found associations between

mean spice use and incidence of foodborne illness, incidence of diar-

rhea in young children, and use of spices and meat-based dishes. The

problem with both studies is that their data are aggregated (mostly) at

the nation level (36 countries in Billing & Sherman, 1998; 70 cuisines

in Bromham et al., 2021). These sample sizes are simply too small to

tease apart the impact of what Bromham et al. (2021) themselves

characterize as a “jungle of entangled variables that covary with cul-

ture, history and geography” (p. 6), such as temperature, disease,

poverty, biodiversity, and population.

In our opinion, the current adaptationist approach to spice use

has placed undue emphasis on temperature and food spoilage, as

there are major, temperature-independent risks of contaminated food

that could be ameliorated by spices, such as zoonotic pathogens

infecting the living animal, and fecal-oral transmission of pathogens

(animal-to-human and human-to-human) via contaminated plant or

animal foods. Despite some costs, there is considerable evidence for

the beneficial biological activity of spices, especially against intestinal

diseases (Rakhi et al., 2018), including evidence that spices can control

pathogens already resident in the gut, such as H. pylori, which infects

the stomachs of about half the world's population. Evidence of effi-

cacy against H. pylori includes antibacterial activity in vitro and anti-

growth activity in vivo in laboratory animals, but clinical evidence is

still lacking (Zaidi et al., 2015). See Figure 5.

Although the extent to which prehistoric and contemporary

hunter-gatherers have used spices is not clear, there is some evidence

that it might be a longstanding practice. Chimpanzees have been

observed to chew leaves when eating freshly killed animals (Krief

et al., 2015), compounds in Neanderthal dental calculus that have

been interpreted as “medicines” might be better conceptualized as

“spices” (Krief et al., 2015), spices were combined with hunted foods

by European foragers and early agriculturalists (Saul et al., 2013), and

contemporary Congo Basin foragers use wild plants as spices (Fils

et al., 2020; Gallois et al., 2020; Tanno, 1981). We propose an

expanded adaptationist hypothesis that preferences for spices (and

perhaps salt, which is also antimicrobial, Albarracin et al., 2011)
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Digestive signs and symptoms
Neurologic Manifestations

Intestinal Diseases
Brain Diseases

Glucose Metabolism Disorders

0 200 400 600

Associations with spices

Watercress
Capsicum frutescens

Capsicum annuum
Mugwort

Celery
Avocado

Sunflower
Clove

Peppermint
Rosemary

Sesame
Chinese cinnamon

Safflower
Fenugreek
Cinnamon

Saffron
Fennel

Liquorice
Turmeric

Ginger
Ginkgo biloba

Garlic

0 300 600 900 1200

Associations with diseases

Health association Positive Negative

F IGURE 5 Top positive and negative health associations with spices (positive: spice associated with improved outcome; negative: spice
associated with worse outcome). Left. Disease categories with the most positive and negative health associations with spices, ranked according to
their total number of associations. Right: Spices with the most positive and negative health associations with diseases, ranked according to
number of associations. The number of positive health associations for spices outnumber the number of negative associations, indicating that
spices, in general, have been reported with beneficial health effects. Data from Rakhi et al. (2018).
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evolved to constitutively manage overall enteric pathogen risk from

whatever source.

7.3 | Self-medication as an inducible defense

When constitutive defenses fail to prevent infections and illness,

inducible (therapeutic) uses of plant substances could help bring infec-

tions under control, albeit with risk of poisoning. There is increasing

evidence that invertebrates and vertebrates, including obligate carni-

vores, have evolved to co-opt plant and fungal toxins to prevent or

treat their own infections, a phenomenon termed self-medication, zoo-

pharmacognosy, or pharmacophagy (Boppré, 1984; de Roode

et al., 2013; Huffman, 1997, 2017; Neco et al., 2019; Rodríguez &

Wrangham, 1993; Villalba & Provenza, 2007; Wrangham &

Nishida, 1983; Yoshimura et al., 2021). A systematic review of self-

medication in mammals found reports of self-medication in 71 species

from 7 mammalian orders, with the most reports in Primates (46 spe-

cies), Carnivores (10 species), and Rodents (5 species). Types of self-

medication included ingestion of whole leaves to expel parasites from

the digestive system (mostly apes and elephants), rubbing fur with

toxic plants (non-human primates), placement of bay foliage around

the nest to reduce ectoparasites (rodents), and use of specific plants

to attenuate negative effects of food ingestion (artiodactyls). Results

suggest that self-medication evolved independently at least four

times, and is associated with traits that increased in the human lineage

in the Pleistocene: body size, brain size, and longevity (Neco

et al., 2019).

7.3.1 | Possible self-medication by Middle
Paleolithic Homo

Middle Paleolithic hominins might have self-medicated, perhaps more

intensively than other apes. An analysis of dental calculus from five

Neanderthals found azulenes and coumarins in one, consistent with

yarrow and chamomile, bitter-tasting plants with no nutritional value

that might instead have been used as medicines (Hardy et al., 2012).

An analysis of ancient DNA in the dental calculus of this same individ-

ual, who had a dental abscess, found sequences of poplar, which con-

tains salicylic acid (the active ingredient in aspirin), a chronic

gastrointestinal pathogen, and antibiotic-producing Penicillium rubens,

suggesting this person might have been self-medicating both their

abscess and a gastrointestinal infection (Weyrich et al., 2017).

Hardy (2019) classified plants from seven Near Eastern archeolo-

gical sites dating from the lower Paleolithic to the early Neolithic into

edible, edible/medicinal, and medicinal/poisonous categories. Medici-

nal plants were quite common across sites (>50% species), and much

more common than in plants used by chimpanzees (�30%) or among

wild flora (�12.5%). Some of the medicinal plants might have been

regularly added to food, that is, they were “spices” (Krief et al., 2015).
In modern populations, foods and medicines also overlap. Among the

Hausa, for example, 30% of plant foods are used as medicines, and

89% of plants used to treat malaria are also part of the diet

(Huffman, 2003; see also Roulette et al., 2018).

7.4 | Ethnopharmacology as a form of
transgenerational immune memory

Inducible immune responses have traditionally been divided into

innate immune responses, which respond to pathogens rapidly and

nonspecifically, and adaptive immune responses, which respond more

slowly but are pathogen-specific and form immunological memory for

rapid responses upon re-exposure (again, there is some overlap in

these systems) (Netea et al., 2016; Netea et al., 2019). Transgenera-

tional transmission of immunity is seen in invertebrates and verte-

brates. In mammals this involves antibody provisioning via

transplacental transfer and breastfeeding (Atyeo & Alter, 2021;

Clements et al., 2020; Erickson, 2022), maternal microchimerism, and

antigen exposure in utero, phenomena termed “transgenerational
immune priming” (Blackwell, in prep; Roth et al., 2018). These mecha-

nisms suggest that there is widespread selection for pathogen

defenses that learn about specific pathogens and transmit this infor-

mation to offspring.

We propose that, analogous to transmitted immune memory,

increased pathogen pressure in the human lineage was a major selec-

tion pressure for the cognitive mechanisms underlying cultural trans-

mission. Huffman (2003) proposed that ethnomedicine, such as

culture-specific and traditional plant uses, is linked to hominid self-

medication strategies – in fact, some traditional plant medicines are

used by both humans and African great apes (Huffman, 2003; Salali

et al., 2016). Our proposal builds on his idea, arguing that in the con-

text of social communication, transmitted information routinely

includes locally adaptive medicinal knowledge, and can be viewed as a

socially transmitted form of transgenerational immune memory (for

related ideas, see Hurtado, 2021).

Medicine is a human universal (Brown, 1991), and traditional

medicines and practices are still very widely used, especially in low-

and middle-income countries (Porras et al., 2021). Although traditional

medicine rarely outperforms Western medicine, Western medical ser-

vices are often unavailable and traditional medical knowledge pro-

vides considerable value (Blackwell & Purzycki, 2018; Kim, Kim,

et al., 2020). Studies of Tsimane horticulturalists found that parental

ethnobotanical knowledge was positively associated with child health

(McDade et al., 2007), including increased BMI (Reyes-García

et al., 2008), with some mixed results in a later study (Reyes-García

et al., 2016). Similarly, in a study of Congo Basin foragers, mothers

with greater knowledge of medicinal plants used to treat respiratory

diseases had children with higher BMI (Salali et al., 2016).

Traditional medicines, furthermore, have many advantages for

drug discovery over other approaches (Atanasov et al., 2015). There

are an estimated 374,000 plant species, 28,000 (7.5%) of which are

used in traditional medicine. This subset is likely enriched in com-

pounds that are both effective against human diseases and also rela-

tively safe for humans (Porras et al., 2021). Databases of plants used
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in traditional medicine are widely screened for medically useful com-

pounds (Anand et al., 2019; Pushpangadan et al., 2018; Wink, 2015;

Yeung et al., 2020). Although the “jungle medicine” narrative has its

share of hype, Western romanticism, and exploitation (Voeks, 2018),

and some systematic assays of ethnomedicines have been disappoint-

ing (e.g., Applequist et al., 2017), there have been about 60,000 publi-

cations on ethnopharmacology, with research increasing dramatically

on inflammation, infection, pain, toxicity, cancer and diabetes (Yeung

et al., 2020).

7.5 | The evolution of medical specialization

Evolutionary theories of cultural transmission emphasize widespread

knowledge that is used on a near-daily basis, such as locally adaptive

subsistence practices (including spice use), toolmaking skills, and

cooperative social norms (Henrich & McElreath, 2003; Richerson &

Boyd, 2008; Richerson & Boyd, 2020). Medical problems are different.

Because the immune system, perhaps combined with the constitutive

behavioral defenses we described earlier, prevents most pathogens

from causing serious illness, the substantial investment in individual

and social learning required to effectively treat specific illnesses with

specific plant substances would only occasionally be useful to the

individual. The costs of acquiring medical knowledge would likely out-

weigh the benefits. Serious illnesses nevertheless unpredictably strike

some individuals, who would benefit from diagnosis and treatment.

To profit from a substantial investment in medicinal knowledge, it

would be necessary for a few medical specialists to cultivate a large,

medically naive clientele that is willing to “pay” for medical services

on the rare occasions they need them. For this dynamic to have con-

tributed to encephalization in the human lineage, it would have to be

the case that “payments” took the form of increased mating success

for healers (i.e., sexual selection) or substantially increased material or

social resources. Selection for division of labor is a related dynamic

(Nakahashi & Feldman, 2014).

In support of this perspective, medical knowledge, though clearly

culturally evolved, is not evenly distributed within and across commu-

nities. Among Baka foragers in the Congo Basin, informants had

almost the same amount of knowledge about plant uses for food and

material culture, whereas knowledge of medicinal plants was mostly

different, and some individuals had markedly more knowledge than

others (Hattori, 2020). Similarly, among BaYaka Congo Basin foragers,

knowledge of medicinal plants was primarily shared with families,

unlike knowledge of food plants and social norms/beliefs, which was

medicine
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misfortune

social
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F IGURE 6 Commonly occurring domains of knowledge and skill that occurred in ethnographic text records of 55 traditional cultures. Vertices
indicate domains that occurred in at least 10 text records, and vertex size corresponds to the number of text records including that domain.
Vertex colors indicate whether or not the domain was included in the original search query. Each edge indicates that a pair of knowledge/skill
domains co-occurred in at least one text record. Edge widths correspond to the frequency with which each domain pair co-occurred
(as determined by the number of text records describing them together, normalized by the maximum frequency = 113). Figure from Lightner
et al. (2021a).
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shared among camp members regardless of family ties (Salali

et al., 2016). Medical knowledge also differs substantially across lan-

guage groups, even within geographic regions (Cámara-Leret &

Bascompte, 2021).

In the ethnographic record, most knowledge specialists are

medicinal knowledge specialists, such as shamans and traditional

healers (Lightner et al., 2021b), whose expertise is often linked to

other useful knowledge domains, such as botany, zoology, and psy-

chology (see Figure 6). Medical specialists typically provide valuable

medical services to a dedicated clientele, often in exchange for pay-

ments of various sorts (Lightner et al., 2021b; Sugiyama &

Sugiyama, 2003), including social, material, and mating benefits (albeit

with limited evidence for the latter, Lightner et al., 2021a). Medicinal

knowledge specialists therefore often treat their knowledge as a pro-

prietary and secretive resource, in contrast to the prestigious mentor-

ships provided by specialists in domains requiring commonly used

skills, such as subsistence or toolmaking (Lightner et al., 2021a).

We propose that in the human lineage, the self-medication

behaviors seen in other apes evolved into widespread daily consump-

tion of pharmacological plants, that is, spices and “recreational” drugs
(discussed next), that were behavioral analogs of constitutive

defenses, and ethnomedical knowledge that was the behavioral ana-

log of an inducible defense. Some ethnomedical knowledge to treat

common infections, such as intestinal helminths, would have been

widespread, but in modern humans, at least, much was probably pos-

sessed by shamans and traditional healers who treated specific but

relatively uncommon illnesses in exchange for various sorts of

payments.

8 | DEFENDING THE BRAIN FROM
PATHOGENS WITH PSYCHOACTIVE DRUGS

The final category of pharmacological plant use that requires an evolu-

tionary explanation is the widespread, habitual use of “recreational”
drugs like caffeine, nicotine, and THC, which we also conceptualize as

(mostly) a constitutive defense. Previously, two of the authors (EHH

and RJS) and their colleagues proposed that use of these substances

might have evolved as constitutive and inducible defenses against

pathogens (Hagen et al., 2009; Hagen et al., 2013; Roulette

et al., 2014; Sullivan et al., 2008). Here we extend this hypothesis to

the behavioral defense of the CNS specifically, which tripled in size in

the Pleistocene and might have been subject to increased virulent

infections, as described earlier. This extension is based on the sub-

stantial differences in immune defenses of the brain vs. other tissues

and organs.

Most tissues have mechanisms to restore functionality when

damaged or infected, which typically involves the destruction and

removal of injured or infected cells (D'Arcy, 2019; Deretic

et al., 2013), and the generation of new cells (Clevers & Watt, 2018;

Xia et al., 2018). Herpes simplex virus infection of skin cells, for exam-

ple, results in massive immune- and virus-mediated cell death, fol-

lowed by rapid replacement of the cells. Most human neurons,

however, cannot be replaced in adulthood because loss of neurons

entails the loss of functionality and often irreplaceable information,

such as in Alzheimer's disease where neuronal cell death causes per-

manent loss of memory and other cognitive dysfunctions (Arendt

et al., 2015). Although adult neurogenesis has been reported in a wide

range of vertebrates, including birds, rodents, and primates, in humans

it is very limited and perhaps non-existent (Denoth-Lippuner &

Jessberger, 2021; Franjic et al., 2022; Gage, 2019; Lucassen et al.,

2020; Moreno-Jiménez et al., 2019; Oppenheim, 2019; Sorrells

et al., 2018). The unique value of neurons presents a conundrum to

the immune system: how to defend the brain from pathogens if

destroying infected neurons would cause permanent loss of critical

learned information or other functionality (Miller et al., 2016;

Solomos & Rall, 2016)? Moreover, CNS inflammatory responses inter-

fere with CNS functions, sometimes permanently, even without neu-

ronal death (Klein et al., 2017). Constitutive defenses are one solution

(Paludan et al., 2021).

8.1 | The blood-brain barrier, a constitutive
defense

The brain is defended by a physical blood brain barrier (BBB). The

BBB prevents most blood-borne pathogens from infecting the brain. It

also prevents most plant toxins and other xenobiotics from entering

the brain (Banks, 2016; Iadecola, 2017; Villabona-Rueda et al., 2019),

including most pharmaceuticals, which often chemically resemble

plant toxins (Agúndez et al., 2014). These properties pose a consider-

able challenge to drug treatment of pathogens that do manage to

infect the CNS (Pardridge, 2012; Terstappen et al., 2021). Certain

small molecules can cross the BBB via lipid-mediated free diffusion,

however, including widely used “recreational drugs” like nicotine and

caffeine.

8.2 | CNS immune privilege and defense

For much of the last century, knowledge that the BBB prevented most

pathogens from reaching the CNS and that tissue grafts implanted in

the CNS parenchyma (functional tissue) did not provoke rejection,

supported the view that the CNS was an “immune privileged” site.

Recent discoveries that the brain parenchyma is connected to the

peripheral immune system via meningeal lymphatic vessels have stim-

ulated debate over the nature of immunity in the brain.

One mainstream view is that barriers establish compartments in

the CNS that differ functionally in their access to the immune system

and some are immune privileged and others are not (Engelhardt

et al., 2017). The meninges surrounding the CNS parenchyma, for

instance, contain a wide repertoire of immune cells, including mono-

cytes and B cells from special skull and vertebral bone marrow reser-

voirs, that provide immune surveillance of the CNS (Alves de Lima

et al., 2020; Brioschi et al., 2021; Cugurra et al., 2021). Although the

CNS parenchyma can mount an inflammatory response to infection

14 HAGEN ET AL.
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via resident microglia (brain-specific macrophages) and other cells, as

well as cells migrating from the meninges, it is characterized by a

dearth of adaptive and innate immune responses relative to peripheral

tissues (Engelhardt et al., 2017).

Immune privilege is a double-edged sword, however. Despite for-

midable CNS defenses such as the BBB, pathogens do manage to

infect the CNS. The protection immune privilege provides to neurons

also creates a niche in which pathogens that manage to infect the

CNS can evade destruction by the immune system (Cain et al., 2019;

Forrester et al., 2018). In fact, to maintain neuronal integrity, immune

responses in the CNS might favor controlling pathogens rather than

eliminating them (Matta et al., 2021; Miller et al., 2016).

8.3 | Habitual recreational drug use as a
constitutive pathogen defense

Humans have evolved to be exceptionally reliant on learned informa-

tion and other CNS functions across a lifespan that exceeds that of

most other mammals, and they occupied a dietary niche with high

exposure to potentially zoonotic pathogens, including those that

infect the CNS. Yet immune defense of the CNS is constrained. Che-

moprophylaxis and chemotherapy with compounds that are harmful

to CNS pathogens but well-tolerated by the CNS would complement

the immune system. Such an evolved chemoprotective strategy for

the CNS requires antipathogenic compounds that can cross the BBB.

Most common recreational drugs, including caffeine, nicotine,

THC, and arecoline in betel nut, are plant defensive neurotoxins (etha-

nol, a yeast fermentation product, is the major exception). Sullivan,

Hagen, and colleagues argued that the prevailing evolutionary “hijack
hypothesis” of recreational drug use, in which evolutionarily novel

substances incidentally activate dopamine reward circuits (Kelley &

Berridge, 2002; Wise, 1998), was implausible because similar com-

pounds have been part of primate diets for millions of years (Hagen

et al., 2009; Hagen et al., 2013; Sullivan et al., 2008; Sullivan &

Hagen, 2002).

Psychoactive substance seeking might instead be an evolved self-

medication strategy to defend against intestinal helminths and other

pathogens (Hagen et al., 2009; Hagen et al., 2013; Sullivan

et al., 2008; Sullivan & Hagen, 2002). All globally popular recreational

drugs are toxic to helminths, as are some hallucinogenic plants used

by Amazonian peoples (Rodríguez et al., 1982); nicotine was widely

used to deworm livestock prior to the development of modern anthel-

mintics, and has the same mechanism of action as some commercial

anthelmintics; an aqueous solution of tobacco is still used to deworm

livestock in some low-income settings (efficacy quantitatively veri-

fied); tobacco is widely mentioned as an anthelmintic in ethnomedical

texts; treatment of intestinal helminths in hunter-gatherers transiently

reduces tobacco use, and tobacco and cannabis use is negatively asso-

ciated with worm burden and reinfection; and there is a switch-like

transition by virtually all humans to regular use of one or more of

these pharmacologically potent substances in adolescence once tera-

togenic risks to the developing brain have dropped (Hagen

et al., 2009; Hagen & Sullivan, 2018; Roulette et al., 2014; Roulette,

Kazanji, et al., 2016; Sullivan et al., 2008; Sullivan & Hagen, 2002). In

this model, females avoid culturally identified teratogenic substances

such as tobacco during pregnancy and their reproductive years,

increasing use postmenopause (Hagen et al., 2016, 2013; Hagen &

Tushingham, 2019; Placek et al., 2017). See Figures 7 and 8.

Helminths are an important class of CNS parasites, and of course

all recreational drugs cross the BBB. Here we extend the antiparasite

hypothesis of recreational drug use to pathogens that infect the CNS,

focusing on the helminth T. solium as a key example. Humans, dogs,

and other animals infected with Taenia and other tapeworm species

have often been treated with arecoline hydrobromide (Gemmell,

1958; Li et al., 2012). Arecoline is an agonist of muscarinic acetylcho-

line receptors, which have numerous roles including in neuromuscular

junctions. Arecoline's mechanism of action against cestodes is proba-

bly to induce paralysis (Liu et al., 2016). Arecoline readily crosses the

BBB and is the primary psychoactive alkaloid in the seed of Areca cat-

echu palm, which is typically chewed with the leaf of the Piper betle

and slaked lime, a concoction termed betel quid or paan (Volgin

et al., 2019). Betel quid is widely consumed in Asia and the Pacific and

is probably the fourth most widely used psychoactive substance after

caffeine, alcohol, and tobacco (Arora & Squier, 2019; Gupta &

Warnakulasuriya, 2002; Mehrtash et al., 2017). Areca seeds, often

combined with pumpkin seeds, were one of several frequently men-

tioned treatments of Taenia infections in Chinese medical texts dating

back about 2000 years (Zou & Ye, 2014). In a controlled study in

humans this combination was found to be close to 90% effective at

expelling Taenia tapeworms (Li et al., 2012). Whether arecoline also

kills Taenia larvae in the brain is unknown, and killing larvae in the

brain induces inflammation, potentially creating more problems than it

solves. However, most of the medical community has accepted that

the benefits of antiparasitic treatment of neurocysticercosis outweigh

the risks (García et al., 2003). In an observational study of individuals

suffering epileptic seizures, many of whom probably had neurocysti-

cercosis based on the local prevalence of this disease, chewers of

Areca catechu (1/3 of the sample) had 59% fewer seizures in the

month prior, compared to non-chewers (a mean of 1.4 vs. 3.3 seizures,

respectively, Mateen et al., 2017).

It is intriguing that a tapeworm that humans acquired from carni-

vores in the Pleistocene, and which infects the CNS and other tissues,

is potentially treatable with the active compound in one of the world's

most popular “recreational” drugs, used on a daily basis by a sizable

fraction of the world's population, and that among those with sei-

zures, use of the drug is negatively associated with seizure frequency.

It is also intriguing that caffeine, the world's most popular drug,

inhibits growth of T. gondii (Munera L�opez et al., 2019), another com-

mon neurotropic pathogen. Consumption of ethanol, like consumption

of pharmacological plant substances, could also be a self-medication

strategy: it is a potent antimicrobial compound, and there is evidence

that it mitigates infections of H. pylori in vitro and in vivo (Liu

et al., 2016; Xia et al., 2020).

Extending previous work (Hagen et al., 2009; Hagen et al., 2013;

Sullivan et al., 2008), we propose that when the benefits exceed the
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costs, humans, and perhaps other animals, have an evolved propensity

to seek out and regularly consume psychoactive plant defensive che-

micals, that is, those that cross the BBB and interfere with neural sig-

naling, so as to deter, control, and eliminate pathogen invasions of the

immune privileged CNS parenchyma.

9 | IMPLICATIONS FOR THE EVOLUTION
OF HUMAN COGNITION

We propose that pathogens were an ecological selection pressure

for increased cognitive capacity in the human lineage. Increased

selection to co-opt anti-infective plant secondary compounds would

have selected for the cognitive abilities necessary to identify a large

variety of plant parts rich in various pharmaceutical compounds and

then to determine which compounds best treated which illnesses.

To illustrate: in order to evaluate the effects of each of 20 plant

substances on 10 illnesses would require 200 “tests”. Moreover,

combinations of drugs can often outperform single drugs. Traditional

Chinese medicine specifies treating Taenia with a combination of

areca and pumpkin seeds, for instance, and this combination has

been shown to outperform either plant substance alone (Li

et al., 2012). There are 190 combinations of two plant substances

chosen from 20; testing each combination against 10 illnesses

would require 1900 tests. In addition, different pathogens can cause

similar symptoms, further complicating diagnosis and treatment. We

are not proposing that humans evolved to systematically test every

combination of plant substances against every illness; we are simply

illustrating the complexity of discovering effective plant-based treat-

ments of infectious diseases. Successful prevention and treatment

of infections, in turn, especially zoonotic infections, would have

enabled a heavier reliance on energy-rich meat and reduced the life-

time energetic cost of immune responses, thereby making more

energy available to, among other things, support the evolution of a

larger brain.

10 | ALTERNATIVE HYPOTHESES,
CAVEATS, AND COMPLICATIONS

The hypotheses we have developed here are speculative and must be

rigorously tested against plausible alternatives. We sketch some of
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F IGURE 7 (a–d) The universal transition to psychoactive druge use in adolescence. Cumulative distribution of self-reported age of first use of
alcohol, tobacco, cannabis, and cocaine in a large (N = 85,052) cross-national sample of users of these substances. Figure from Degenhardt et al.
(2016). (e) Prevalence of tobacco and cannabis use among Aka forager children, adolescents, and adults, by sex (no children reported use). Data
from Roulette, Hagen, et al. (2016). (f) Urinary caffeine metabolite (AAMU: 5-acetylamino-6-amino-3-methyluracil) excretion rate in a nationally

representative US sample (N = 2714); 97.5% had detectable AAMU. Self-reported caffeine intake in this sample exhibited the same age
dependence, as did concentrations of urinary caffeine and other caffeine metabolites. Figure and data from Rybak et al. (2015). These patterns
suggest the existence of a developmental “switch” to psychoactive drug use during adolescence.
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those alternatives next, along with the types of evidence that could

discriminate among them.

Human's intensified use of medicinal plants could simply be a

byproduct of a capacity for cumulative culture that evolved for other

reasons (e.g., foraging or sociality). The motivation to use such plants

could be common to all primates or mammals, with only the cognitive

ability to do so increasing in humans. In addition, modern global trade

would facilitate this usage by providing access to a much greater vari-

ety of plants than are available to other species.

One test would be to determine the extent to which patterns of

medicinal and psychotropic plant use by chimpanzees and other apes

converge or diverge from human patterns of use. For example, do

chimpanzees or other apes exhibit a developmental shift to regular

consumption of psychotropic substances that resembles the switch-

like transition seen in human adolescents (Figure 7)? Chimpanzees do

consume ethanol and fermented fruit under natural conditions (Amato

et al., 2021; Hockings et al., 2019). Unlike tobacco and other psycho-

tropic plants favored by humans, however, ethanol contains substan-

tial calories, which might explain its use by chimpanzees and other

primates (Dudley, 2014).

The effectiveness of psychotropic drugs against CNS infections is

largely hypothetical and the possibility remains that psychotropic effects

are merely a byproduct of the shared features of human and parasite

nervous systems, and that the use of these drugs has more to do with

their effects elsewhere in the body, for example in the gut, as argued

previously (Hagen et al., 2009; Hagen et al., 2013; Sullivan et al., 2008).

Possible tests include investigations of the prophylactic effects of

typical serum levels of nicotine, arecoline, caffeine, and other psycho-

active drugs against CNS infections of Taenia and other helminths or

pathogens in model organisms; evidence that regular psychoactive

drug use protects against helminth or other infections of the CNS in

humans; evidence that CNS infections were a significant selection

pressure, and more so in humans than other apes (e.g., genetic evi-

dence of selection on CNS-specific immune genes and regulatory ele-

ments that diverge from other apes); and evidence that clearing

Taenia or other infections of the CNS in humans reduces psychoactive

drug use (similar to Roulette et al., 2014).

If humans evolved to seek out some substances as prophylactics,

they may continue to seek these substances even in the absence of

immune challenges. Similarly, humans might seek out substances

which present cues similar to medicinal plants, that is, psychoactive

effects, even if the particular plants chosen are not themselves medic-

inal. Both of these factors may make establishing the link between

drug use and pathogen defense more challenging, particularly in mod-

ern, low-pathogen contexts.

If humans evolved a taste for plant secondary compounds for

self-medication, this could have encouraged drug plant domestication

and created runaway selection in which plants were selected for

greater and greater amounts of these compounds (Alternately, this

same process can also be seen as plants having been selected to

manipulate humans by producing these compounds in order to

encourage humans to spread and cultivate them, e.g., Pollan, 2002).

Evolutionary model of psychoactive plant use by age, sex, and total fertility

Males
Females,
Low total fertility rate

Females,
High total fertility rate

Childhood 
High teratogen risk 
during rapid brain 
and body growth 
up-regulates toxin 
defenses and 
down-regulates 
drug consumption. 

Adolescence 
Reduced teratogen risk, 
increased mating effort, and 
increased parasite load 
down-regulate toxin 
defenses and up-regulate 
drug consumption. 

Pre-menopause 
Increased risk of fetal/infant harm 
up-regulates female toxin 
defenses and down-regulates 
female drug consumption, and 
relatively more so in high TFR 
populations. Cultural transmission 
of teratogenic substances plays a 
major role in determining which 
substances females avoid. 

Post-menopause 
Decreased risk of fetal/
infant harm down-regulates 
female toxin defenses and 
up-regulates female drug 
consumption, and relatively 
more so in high TFR 
populations.

 

Drug consumption

F IGURE 8 Theoretical model of recreational drug use as an evolved constitutive pathogen defense that varies by age, sex, reproductive
status, total fertility rate (TFR), and cultural information about teratogenic substances. For details, see Hagen et al. (2016) and Hagen and
Tushingham (2019).
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Such a process could lead to selection for compounds with the stron-

gest psychotropic effects, even if these are not the compounds with

the greatest medicinal value.

Similarly, once humans began regularly consuming and using

these compounds, their use might have taken on social, ritual, and

recreational significance. Medical specialists are often religious

leaders, for instance (Lightner et al., 2021b). Such seeking out of

drugs for reasons unrelated to parasite defense may have further

selected for drug seeking in humans and psychotropic compounds

in plants, further divorcing the cue from the original parasite

defense function.

Alternatively, religious leaders such as shamans might have

emerged through the use of deceptive, subjectively appealing

practices (Buckner, 2022; Hong, 2022). That is, shamans could gain

prestige by professionalizing “plausible-seeming magical practices”
that convince others of their superhuman qualities, independent of

their ability to actually apply useful medicinal knowledge

(Singh, 2018, p. 5). This hypothesized origin of shamanism would

reflect a more exploitative account than ours offers, but the two are

not mutually exclusive: Deceptive practices might coexist with benefi-

cial medicinal services (Blackwell & Purzycki, 2018), and cross-cultur-

ally, shamans might only partially overlap with the traditional

medicinal specialists we described here. Future research could test

the social aspects of our proposal by investigating the efficacy of sha-

mans' healing practices and comparing it to the efficacy of widespread

folk alternatives. Consistent with alternative hypotheses, shamans'

Increase
Decrease

Energy

Source

Sink

Neither

Carnivory &
Extractive foraging

Brain/body size
& Longevity

ImmunityImmune
costs

Pharmacological plant use
& Medical knowledge

Ecological
knowledge

Climate variablity,
Large range size

Zoonotic/
CNS infections

F IGURE 9 Homo medicus: Hominin entry into a more carnivorous niche provided the caloric density necessary to evolve a larger brain and
body size, enabling a greater reliance on learned ecological knowledge in a long-lived animal. It also increased exposure to novel zoonotic
diseases, some of which may have been more likely to infect the CNS. Pleistocene climate variability and increased range size in Homo also
increased zoonotic pathogen pressure. Defending the larger, longer-lived body and brain from increased pathogen pressure selected for increased
investment in immunity, which has energetic and other costs, constraining the evolution of a larger body and brain. Ecological knowledge would
have been useful in acquiring knowledge of pharmacological plants that provided constitutive and inducible defenses against pathogens. Selection
would have particularly favored hominins who sought out compounds able to cross the BBB to supplement defense of the immune-priviledged
CNS. The evolution of drug use, spice use, and healthcare would have further reduced mortality risk and increased energy availability by reducing
immune costs and increasing the safety of carnivory. These effects caused further positive feedback on selection for bigger brains, extended
juvenile periods and longevity, allowing for even more acquisition of ecological knowledge and even greater payoffs from pharmacological
plant use.
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healing practices might also be integrated into a broader set of reli-

gious practices that serve separate functions that have little-to-no rel-

evance to medicine.

11 | CONCLUDING REMARKS

The human lineage entered a more carnivorous dietary niche

c. 2.6 mya. Hunting provided the high-quality meat-based diet neces-

sary to support the evolution of a large brain while at the same time

posing formidable cognitive challenges, thereby selecting for

increased cognitive abilities (Kaplan et al., 2000). It also increased the

risk of zoonotic spillover. We propose that selection intensified for

the self-medication strategies already in place in apes and other pri-

mates (Huffman, 2003) for three major reasons. The first was a shift

and perhaps increase in zoonotic pathogen pressure from increased

carnivory, climate variability, and range size. The second was the chal-

lenges of defending a large body from pathogens across what would

eventually become one of the longest lifespans of any mammal. And

the third was the increasingly negative consequences of CNS infec-

tions in a lineage that was rapidly evolving a larger brain, an organ in

which immune defenses are highly constrained.

Local florae were continually evolving thousands of compounds to

combat the same broad classes of continually evolving pathogens that

infected human ancestors. The human lineage, entering a knowledge-

based niche, began to evolve the cognitive mechanisms needed to

determine which plant substances best prevented, reduced, or elimi-

nated which illnesses. This resulted in an inducible defense system –

treating specific illnesses with specific plants, that is, medicine and

medical specialization, and two constitutive defense strategies: rou-

tinely adding plants high in pharmacological compounds—spices—to

foods, and habitually consuming psychoactive plant substances that

entered systemic circulation and crossed the BBB, suppressing patho-

gens in multiple tissues, including the CNS. Along with cooking, as

emphasized by others (Smith et al., 2015; Wrangham, 2009), these

medical behaviors would have permitted a heavier reliance on energy-

rich animal foods and reduced the need for energetically expensive

immune responses, supporting the evolution of a larger, energy inten-

sive brain. See Figure 9. In the story of human evolution, which has long

featured hunting, healing had an equal role to play.
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